martes, 18 de septiembre de 2012

DISOLUCIÓN Y SOLUBILIDAD


El fenómeno de la disolución

Cuando un terrón de azúcar se introduce en un vaso lleno de agua, al cabo de un tiempo parece, a primera vista, que se ha desvanecido sin dejar rastro de su presencia en el líquido. Esta aparente desaparición parece indicar que el fenómeno de la disolución se produce a nivel molecular.
La disolución de un sólido supone la ruptura de los enlaces de la red cristalina y la consiguiente disgregación de sus componentes en el seno del líquido. Para que esto sea posible es necesario que se produzca una interacción de las moléculas del disolvente con las del soluto, que recibe el nombre genérico de solvatación. Cuando una sustancia sólida se sumerge en un disolvente apropiado, las moléculas (o iones) situadas en la superficie del sólido son rodeadas por las del disolvente; este proceso lleva consigo la liberación de una cierta cantidad de energía que se cede en parte a la red cristalina y permite a algunas de sus partículas componentes desprenderse de ella e incorporarse a la disolución. La repetición de este proceso produce, al cabo de un cierto tiempo, la disolución completa del sólido. En algunos casos, la energía liberada en el proceso de solvatación no es suficiente como para romper los enlaces en el cristal y, además, intercalar sus moléculas (o iones) entre las del disolvente, en contra de las fuerzas moleculares de éste.
Para que la energía de solvatación tome un valor considerable es necesario que las interacciones entre las moléculas del soluto y entre las del disolvente sean de la misma naturaleza. Sólo así el fenómeno de la solvatación es lo suficientemente importante como para dar lugar por sí solo a la disolución del cristal. Ello explica el viejo aforismo de que «lo semejante disuelve a lo semejante». Los disolventes apolares como el agua son apropiados para solutos polares como los sólidos iónicos o los sólidos formados por moléculas con una cierta polaridad eléctrica. Por su parte, los disolventes apolares, como el benceno (C6H6), disuelven las sustancias apolares como las grasas.
Junto con los factores de tipo energético, como los considerados hasta ahora, que llevan a un sistema sólido/líquido a alcanzar un estado de menor energía potencial, otros factores determinan el que la disolución se produzca o no de forma espontánea. Esta afirmación está respaldada por dos tipos de fenómenos: en primer lugar la existencia de procesos de disolución que implican una absorción moderada de energía del medio, lo cual indica que el sistema evoluciona hacia estados de mayor energía interna; en segundo lugar sustancias apolares como el tetracloruro de carbono (CCl4), aunque poco, se llegan a disolver en disolventes polares como el agua.
Los procesos físico-químicos están influidos, además, por el factor desorden, de modo que tienden a evolucionar en el sentido en el que éste aumenta. La disolución, sea de sólido en líquido, sea de líquido en líquido, aumenta el desorden molecular y por ello está favorecida. Contrariamente, la de gases en líquidos, está dificultada por el aumento del orden que conllevan. Del balance final entre los efectos de ambos factores, el de energía y el de desorden, depende el que la disolución sea o no posible.
La solubilidad
Las sustancias no se disuelven en igual medida en un mismo disolvente. Con el fin de poder comparar la capacidad que tiene un disolvente para disolver un producto dado, se utiliza una magnitud que recibe el nombre de solubilidad. La capacidad de una determinada cantidad de líquido para disolver una sustancia sólida no es ilimitada. Añadiendo soluto a un volumen dado de disolvente se llega a un punto a partir del cual la disolución no admite más soluto (un exceso de soluto se depositaría en el fondo del recipiente). Se dice entonces que está saturada. Pues bien, la solubilidad de una sustancia respecto de un disolvente determinado es la concentración que corresponde al estado de saturación a una temperatura dada.
Las solubilidades de sólidos en líquidos varían mucho de unos sistemas a otros. Así a 20 °C la solubilidad del cloruro de sodio (NaCl) en agua es 6 M y en alcohol etílico (C2H6O), a esa misma temperatura, es 0,009 M. Cuando la solubilidad es superior a 0,1 M se suele considerar la sustancia como soluble en el disolvente considerado; por debajo de 0,1 M se considera como poco soluble o incluso como insoluble si se aleja bastante de este valor de referencia.
La solubilidad depende de la temperatura; de ahí que su valor vaya siempre acompañado del de la temperatura de trabajo. En la mayor parte de los casos, la solubilidad aumenta al aumentar la temperatura. Se trata de procesos en los que el sistema absorbe calor para apoyar con una cantidad de energía extra el fenómeno la solvatación. En otros, sin embargo, la disolución va acompañada de una liberación de calor y la solubilidad disminuye al aumentar la temperatura.

Propiedades de las disoluciones
La presencia de moléculas de soluto en el seno de un disolvente altera las propiedades de éste. Así, el punto de fusión y el de ebullición del disolvente cambian; su densidad aumenta, su comportamiento químico se modifica y, en ocasiones, también su color. Algunas de estas propiedades de las disoluciones no dependen de la naturaleza del soluto, sino únicamente de la concentración de la disolución, y reciben el nombre de propiedades coligativas.

Propiedades Coligativas
Se denomina así a las propiedades que dependen del número de moles disueltos en un determinado disolvente.
Aumento ebulloscópico: aumento del punto de ebullición de una solución con respecto al del solvente puro.
Descenso crioscópico: disminución del punto de solidificación de una solución con respecto al del solvente puro.
Si el agua contiene un soluto como la sal (para el caso salmuera), las moléculas del mismo se interponen entre las del líquido, dificultando la ebullición y produciendo un aumento ebulloscópico. Si quisiéramos congelar la salmuera deberíamos bajar de 0 °C para lograrlo.
Entonces:
- La salmuera ebulle a más de 100 °C.
- La salmuera se solidifica a menos de 0 °C.
Otro ejemplo es el "líquido refrigerante" para los motores, el más común es una solución de glicerol y agua.
Aprovechando el aumento ebulloscópico y el descenso crioscópico se pueden calcular pesos moleculares.

lunes, 17 de septiembre de 2012



Clasificación de los compuestos inorgánicos y sus mecanismos de reacción.

De acuerdo con los elementos que los forman, los compuestos químicos inorgánico se clasifican por grupos que poseen la misma característica y comportamiento. Estos grupos, llamados también funciones, están estructurados de la siguiente manera:


  • Óxidos básicos
  • Óxidos ácidos 
  • Hidruros
  • Hidróxidos
  • Ácidos
  • Sales

Óxidos básicos: Estos compuestos están formados por la unión de un metal y oxígeno; se encuentran comúnmente e la naturaleza, ya que se obtienen cuando un metal se pone en contacto con el oxigeno del medio ambiente, y que con el paso del tiempo se va formando óxido del metal correspondiente. Pueden prepararse industrialmente mediante la oxidación de los metales. Ejemplos: óxido de calcio, óxido plúmbico:

Metal  +    Oxígeno   à   Óxido básico
                                                                       2Ca2  +    O2 (2-)     à   2CaO (Óxido de Calcio)
                                                                       Pb4    +    O2 (2-)       à   PbO2 (Óxido Plúmbico)

En este caso, el calcio tiene el mismo número  de oxidación que el oxigeno, 2+ y 2-  respectivamente; por lo tanto, su relación es 1 a 1. Por otra parte, la molécula de todos los metales es monoatómica y la del oxigeno es diatómica; en consecuencia, se requieren dos moléculas de calcio para reaccionar con la del oxigeno y formar dos moléculas e óxido de calcio. El numero de oxidación del plomo es 4+, mientras que el de cada oxigeno es 2-; por lo tanto la relación es de un átomo de plomo por dos de oxigeno (1 a 2).

Óxidos ácidos: Se forman al hacer reaccionar el oxígeno con elementos no metálicos. Como interviene el oxigeno en su formación, son también conocidos como óxidos, pero para diferenciar un óxido básico de un óxido ácido, a estos últimos se les nombra anhídridos. Ejemplos: óxido carbónico (oxido de carbono), óxido hipocloroso.

                                                                       No Metal  +  Oxigeno à  Óxido ácido
                                                                       C          +  O2 (   à  CO2 (óxido carbónico)
                                                                       2Cl2   + O2     à  Cl2O (óxido hipocloroso)

El oxigeno y el cloro son moléculas diatómicas, es decir, formadas por dos átomos. Cada átomo de oxígeno tiene como numero de oxidación 2- y cada átomo de cloro 1+; en consecuencia, se necesitan dos átomos de cloro para unirse a un átomo de oxígeno; o bien, cuatro átomos de cloro por dos de oxígeno para formar dos moléculas de anhídrido hipocloroso.

Hidruros: Son compuestos formados de la unión del hidrogeno con elementos metálicos como el hidruro de estroncio, etc. La formación de los hidruros es el único caso en que el hidrogeno trabaja con valencia negativa. Ejemplos: hidruro de sodio, hidruro cúprico.

                                               Metal    +   Hidrógeno  à Hidruro
                                                                       2Na1+  +   H2 (1-)         à 2NaH (hidruro de sodio)
                                                                       Cu2+    +   H2 (1-)          à CuH2 (hidruro cúprico)

Hidróxidos: Se caracterizan por llevar en su molécula el radical (OH-) llamado radical oxhidrilo o hidroxilo. Se forman al agregar agua a un óxido metálico. Ejemplos: hidróxido de calcio, hidróxido plúmbico:

                                                                       Metal    +    Agua   à  Hidróxido
                                                                       CaO      +  H2O      à Ca(OH-) (hidróxido de calcio)
                                                                       PbO2    + 2H2O      à  Pb(OH)4 (hidróxido plúmbico)

Ácidos: Tienen la característica de que sus moléculas inician siempre con el hidrógeno. Pueden ser:

  • Hidrácidos: Se forman con el hidrógeno y un no metal. Ej.: ácido bromhídrico, ácido clorhídrico.
  • Oxiácidos: Son aquellos que llevan oxígeno en su molécula además del hidrógeno y el no metal. Ej.: ácido sulfúrico, ácido nítrico.

Sales: Son compuestos que provienen de la sustitución de los hidrógenos de los ácidos por un metal, cuando reacciona un ácido con un hidróxido; por lo tanto, de los hidrácidos resultan las sales haloideas o binarias, las cuales quedan formadas por un metal y un no metal. Ej.: cloruro de sodio, sulfuro de plata:
                                                           Hidrácido   +  Hidróxido à Sal haloidea o binaria  + Agua

De los oxiácidos pueden formarse tres tipos de sales: oxisales neutras, ácidas y complejas.

  • Oxosales neutras: Se forman cuando se sustituyen totalmente los hidrógenos del ácido. Ej.: nitrato de sodio, sulfato de potasio.
  • Oxosales ácidas: Se obtienen cuando la sustitución de los hidrógenos es parcial.
  • Oxosales complejas: Resultan de la sustitución de los hidrógenos del ácido por dos o tres metales diferentes. Ej.: fosfato de calcio y potasio.
Algo sobre Soluciones

">